
Improving the Quality of Software by Refactoring

Gurpreet kaur
Department of Computer Science and Software Engineering

Lovely Professional University,
 Phagwara, India

Gurpreetheer70@gmail.com

Balraj Singh*
Department of Computer Science and Software Engineering

Lovely Professional University,
 Phagwara, India

Balraj.13075@lpu.co.in

Abstract— Software code management has become another
key skill required by software architects and software developers.
Size of software increases with increase in count of features in
software. Code refactoring is process of reducing code
maintenance cost. It is achieved by many different techniques like
extract, move methods, fields or classes in code. In this research
we focused on improving the maintainability of the code by
looking into the different refactoring techniques and improving
upon them.

 We proposed an algorithm to improve the refactoring
process which results in higher maintainability. To look into the
validity of our proposed algorithm, we have used Junit and ref-
finder to analyse the code and generate the result metrics. We
have observed the effectiveness of our work by comparing the
different code maintainability indexes generated by the tool. In
our research we have examined four releases of the software
project for code refactoring and maintainability. Adding some
extra features and using enhanced refactoring techniques
measuring the code metrics and comparing the results of current
releases with the previous releases.

Keywords— Code refactoring, bad smells, refactoring process,
software metrics, software quality attributes.

I. INTRODUCTION
Refactoring approach is used to refine the internal structure
(part) of code without damaging the external activities of the
software [21]. Refactoring approach is used to decreases the
complexity of the software by fixing errors or appending new
features. Refactoring also improves the performance of the
software. Refactoring is also involved in reengineering
process to enhance the quality of the software. The aim of the
refactoring approach is to maintain the code of software and
make it healthier.
The process of the transformation of the source code can be
done by the refactoring. The achieved transformation through
refactoring makes the software easy to understand without
changing the observable behavior. The different refactoring
methods that are used in the code at right place can be
beneficial for the incremental improvement in the software
quality [20] [21]. To remove or lower the defects for the
improvement of the software quality, refactoring is done
manually. The main aim of the refactoring is alteration of the
code safely to enhance the quality. Refactoring techniques are
utilized to refine the code. Different refactoring techniques

are created for implementing with suitable quality attributes
and metrics. The cost of software maintainability can be
decreased for long time by using refactoring on the software
code. The existing software problems can be removed by
enhancing the software code with the help of refactoring. The
software can be improved by manipulating the code. The
action of refactoring can modify the internal activities with the
purpose of accepting its processes. In the process of software
development, the software system is implements first and then
the code for implementation purpose is written. Refactoring
has both positive and negative effects on the quality of the
software. Factors such as high power consumption extend
execution time, additional memory used were also examined.
The refactoring process upgrades the software quality by
adding new features to the code and by removing the bad
smells.
Bad smells is used to indicate the poor design [8]. Some bad
smells like duplicate code, long method, long class, long
parameter list, switch statements, message changing, too much
communication between objects etc. Bad smells are mostly
easy-to-spot signs in the code.
RQ1. Effect of refactoring on low maintenance code?
RQ2. Which attributes of the code are affected most by
refactoring?
RQ3. Impact of code re-factoring on future releases in terms
of ease of adding new features and removing a feature with
minimal changes.

II. RELATED WORK
Software or code refactoring has become a major area of
research these days. The following research questions are
formulated to evaluate categories and summarize the findings
of the accumulated software refactoring literature:
 I. Kádár et.al in 2016 [1]. In this paper the author proposed
the future inspection of code refactoring in practice by
producing a necessary open dataset of source code metrics and
utilized refactoring through various releases of 7 open source
system. The author explored the quality attribute of the refined
source code classes and the effectiveness of source code
metric upgrade by refactoring techniques [1] [16]. The author
evaluated the correlation between maintainability and
refactoring methods and also examined how source code
metric can be done by refactoring affect. The author proposed
the dataset including refactor data and more than 50 types of

International Conference on Intelligent Computing and Control Systems
 ICICCS 2017

978-1-5386-2745-7/17/$31.00 ©2017 IEEE 185

source code metrics for 37 releases of 7 open source system at
the class and procedure level.
 Study from Istvan Kadar et.al in 2016 [2]. In this paper the
authors manually performed the refinement of the code to
obtain the dataset. They evaluated the dataset to find whether
the refactor code operations with refactoring activities and law
maintainability used by the authors relates to the internal
quality or not. For this method, they studied the
maintainability values in the datasets by using Mann-Whitney
U test on different set of data formed by the particular item
whether they were affected by the refactoring methods [2]
[13]. The investigation showed that the average
maintainability of refactor data is much lower. The manually
formalized refactoring dataset included only the approved data
which was obtained from original dataset.
 Study from Gabriele Bavota et.al in 2015 [3]. In this paper
the authors performed study on three java open source
software system to evaluate the relationship between
refactoring and code quality. The research has organized 63
releases of three java system software and involves the manual
survey of 15,008 refactoring operations and 5478 smells. The
refactoring performed on those classes which were affected by
the smells was analyzed to be 40% and only 7% smells were
actually removed. In this paper the quantitative method was
used to perform refactoring techniques [3] [7]. They also used
coupling metrics to measure the effect of refactoring and
selected the quantative method to choose relevant refactoring
type. In this paper they measured the complexity, clone
metrics and size of the refactor data.
 Study from anshu rani et.al in 2012 [7]. In this paper the
authors discussed some refactoring techniques, tools and some
features for code refactoring. Basically refactoring is used to
enhance the internal quality, maintainability and reliability
without affecting external structure. The author proposed
some steps to perform refactoring on code like identifying the
code where refactoring should be applied or determining the
refactoring methods which can be used for particular place,
assurance about maintaining behavior, applying refactoring
technique and accessing the results of refactoring code[7] [13].
 Study from Anam shahjahan et.al in 2015 [5]. In this paper
the researchers proposed a new study to enhance the features
of the code by using graph theory techniques. Refactoring is a
procedure of enhancing the quality of code without changing
its internal structure and external part. They used hypothesis
techniques to correlate the results that produced. Response
time is also got improved in this study. Analyzability,
changeability, time behavior and resource utilization are main
four qualities attributes that are used to improve code quality.
 Study from Yoshio kataoka et.al in 2002 [15]. In this paper
the authors proposed a quantative assessment method to
calculate the improved maintainability results of code
refactoring. The author concentrated on the coupling metrics

to assess the effect of refactoring on code. In this paper the
author compared the coupling before using refactoring
methods and after using refactoring techniques to improve the
quality and assess the maintainability improvement. In this
paper the author used three coupling metrics and combined
these three coupling metrics to evaluate the code using
different code refactoring methods [15] [25].
 Study from Michael Wahler et.al in 2016[36]. In this paper
the author reports on a case study in which magnetic
researchers were consulted by software engineers in
refactoring their simulation software. The stakeholders of the
research project considered the software to be un-maintainable
as it had reached to a size of 30 kilo line of code of Java. The
case study states the procedure of refactoring the system under
the guidance of a software engineer with results supported by
static analysis and software metrics. It tells how software
engineers evaluated and selected refactoring to incorporate to
the system using their precise judgment with input from static
analysis tools and discusses the outcomes of refactoring as
evaluated by code owners and reported via static analysis
metrics.
 They presented a case study on refactoring a design tool for
magnetic components so that its maintainability could be
increased. In order to prioritize the maintenance tasks, they
combined the results from automatic code analyses with the
subjective assessment of the original developer. The combined
assessment was also used to measure the success of their
refactoring activities. The results were encouraging. The
number of potential issues found by Find Bugs was reduced
by 23 % and around 82% of amount of duplicate lines of code
was reduced.
 Study from Chaitanya Kulkarni et.al in 2016[37]. In this
paper the author aims mainly towards the possibility of
detecting a refactoring code and to find out whether the code
clone can be securely refactored or not. Three methods were
applied: Nesting Structure Mapping, Statement Mapping and
Precondition Examination. They applied some techniques like
Pull-Up Method and Push-Down Method in order to refactor
the code. In their approach, they tried to find the refactorable
code by using methods and also refactored the code so as to
remove the problem of code cloning.
 Study from Minas F. Zibran et.al in 2015[38]. In this paper
author tells about characteristics of clones can be understood
by clone analysis and visualization. A number of studies have
analyzed clones and their evolution while a numerous
techniques have also been proposed in order to visualize the
clones that aid in clone analysis. However, clone analyses and
visualizations with respect to inheritance hierarchy and call
graphs have remained ignored so far. In this research paper,
the author argued that such analyses and visualizations with
respect to the inheritance hierarchy and call graphs are
necessary to help in dealing with clones for refactoring.

International Conference on Intelligent Computing and Control Systems
 ICICCS 2017

978-1-5386-2745-7/17/$31.00 ©2017 IEEE 186

TABLE I: Summary Of Refactoring Techniques

Authors

Case Study

Internal Measures

External Measures

Refactoring

Kataoka et al.[29]

A C++ program

Coupling

Maintainability

Extract Method and
Extract Class

Stroulia and Kapoor
et al.[27]

Academic

Size and coupling

Design extendibility

Extract Super class,
Extract abstract class

Leitch and Stroulia
et al.[31]

Academic and
commercial

Code size, number
of procedures

Maintenance effort
and costs

Extract Method, and
Move Method

Tahvildari and
Kontogiannis et
al.[32]

Four open-source
applications

coupling, cohesion,
inheritance and
complexity

Maintainability

Code
Transformations

Bois et al.[30]

open source
software

cohesion and
coupling

-

Extract Method,
Move Method,
Replace Method w
Method Object,
Replace Data Value
w Object, and
Extract Class

Moser et al.[35]

A project in
industrial
environment

LOC, CK measures,
Effort (hour),

Productivity (LOC)

Alshayeb et al.[34]

Three small Open-
source projects

CK measures, LOC,
FOUT

adaptability,
maintainability,
understandability,
reusability, and
testability

Extract Class,
Encapsulate Field,
Extract Subclass,
Move Class, Extract
Method, Replace
Temp with Query,
and Extract Subclass

Sahraoui et al.[26]

A C++ program

Inheritance and
coupling measures

Fault-proneness

Extract Super class,
Extract Subclasses,
Extract Aggregate
Classes

Tahvildari et al.[32]

A project in
industrial
environment and
open library; both
written in C.

Halstead's efforts,
LOC, and number of
Comment lines per
module

Maintainability and
performance

Design patterns

Noble Kumari et.
al[14]

Open source code Coupling, Cohesion
and inheritance

adaptability,
maintainability,
understandability,
reusability,
testability, fault
Proneness, stability
and completeness

Wrap Return value,
Safe Delete and
Replace Constructor
with Builder method

International Conference on Intelligent Computing and Control Systems
 ICICCS 2017

978-1-5386-2745-7/17/$31.00 ©2017 IEEE 187

III. RESEARCH APPROEACH
Refactoring is a technique which is used to enhance the
internal quality of the software without changing the external
behavior of the software. Internal quality attributes are used as
a software metrics and software metric is used to evaluate the
maintainability of the software. In our research we will
evaluate project for code refactoring and maintainability of
code taking four releases of the project. Ref-Finder will be
used as tool to extract code refactoring differences between
releases of project. To measure code metrics in each release
we will use halstead tool that is easily used to measure code
metrics and refactoring problems in the code.

Following are the steps of proposed methodology:

1. Gather source code from previous dataset.
2. Scan each release individually for code metrics
3. Measure code metrics
4. Apply the enhanced re-factoring techniques
5. Measure code metrics again
6. Compare result with existing techniques

A. Algorithm: Proposed algorithm for enhanced refactoring

technique which is mentioned in step 4 of methodology.

1) Scan Junit releases 4.9.1, 4.10, 4.11 and 4.12
2) Find following in code scan:

a) Impact of code re-factoring on future releases in
terms of ease of adding new features and
removing a feature with minimal changes

b) Effect of refactoring on low maintenance code.
c) Which attributes of the code are affected most by

refactoring?
3) Create list of refactoring candidate classes
4) For each candidate

a) Scan class to find:
i. Generate class flow for methods

ii. Variables have getter /setter methods
iii. Methods have flow which cannot be further

divided
iv. Scan code fragments to find similar code
v. If similar code exists in different methods then

I. Flag class as refactoring
vi. Scan methods for variables used

b) Assign class score for refactored code in
variables and methods

5) For each class having score >8 generate list for
suggestion of lists for missing refactoring.

Here is flowchart depicting methodology to be followed for
research:

Fig1. Proposed methodology
To look into the source code refactoring practically, we
worked on the source code estimations and associated
refactoring techniques. We assess the relationship between
the numbers of refactorings techniques impacting the product.
We inspected the current techniques of refactoring a source
code through the quantified metric values and proposed an
enhanced algorithm which performs better in refactoring an
existing code.

B. Data Construction
The dataset contains information release version of Junit open
source java framework accessible in GitHub which gives
details about projects. This project was chosen for our
research reason due to the adequate number of releases
adaptation and the measure of code between two adjacent
releases. We examine 3 to 4 arrival of Junit system. For each
release version of Junit system, class and methods level
measurements and the number of refactoring assembled by
refactoring systems. Table II gives the aggregate number of
classes, methods and refactoring procedures.
TABLE II. Total Number Of Classes, Methods And
Refactoring

System No. of
classes

No. 0f
Methods

Refactoring

Junit
existing

1,267 4,124 553

Junit
refactored

1,267 4,124 200

We played out a relationship examination on the RMI
estimations of the classes and the amount of refactorings
affecting these classes. We took the RMI values from releases,
and the amount of refactorings from releases. We assessed
whether low quality classes got refactored more truly than
various classes or not. We figured the differences of the metric
values between the resulting releases. A significant part of the

International Conference on Intelligent Computing and Control Systems
 ICICCS 2017

978-1-5386-2745-7/17/$31.00 ©2017 IEEE 188

time negative differentiations mean a change, as lower metric
qualities are better.

IV. RESULTS
In this section we compress the appraisal consequences of the
gathered refactoring dataset with respect to software
maintainability. In the first place, we describe the results of
the investigation on the maintainability of refactored classes to
answer RQ1. A while later, we introduce the findings on the
impact of refactorings on source code measurements to answer
RQ2. Applying RQ3 helped in upgrading the RMI index there
by reducing refactoring requirement on build on build basis in
Junit dataset.
 The graph below shows ratio of change in metrics after
applying refactoring derived by 3 questions that has were
defined in initial objectives of our research. The refactoring
techniques move method and mode, move field, extract class
are applied to Junit releases 4.12, 4.11 and 5.1 releases to
compare the effectiveness of our approach for refactoring.
Applying questions RQ1 & RQ2 helped in maintaining the
coupling and separation of concerns in classes. Applying RQ3
helped in upgrading the RMI index there by reducing
refactoring requirement on build basis in Junit dataset.

Fig 2.Metric change

A. Nested block depth: Nested block depth helps in

identifying that if a method or class is serving more than
one purpose that would keep on adding LOC to
class/method release by release ultimately making it
unmanageable after some time. Lower the NBD is more
manageable class. Nested block depth increases
complexity of code and thus adds to maintainability of
the code. Simplifying nested blocks and replacing it with
inherited classes helps in maintaining simplifying it.

Fig 3.Nested Block Depth

B. Number of parameters: : NOP increase with increase in

desired functions in a method. The more parameters are
added complexity of method would increase with NOP.
Thus lower NOP helps in maintaining code
maintainability. NOP increases with increase in
complexity of methods, applying future release method
helps in reducing method parameters and thus reducing
NOP.

Fig 4.Number of parameter

C. No. Of classes: No. Of classes in a code management

defined how separation of function in classes. Number of
classes increase as we implement refactoring. Applying
futuristic approach increase need of loose coupling in
classes thus increasing number of classes

Fig 5. Number of classes

International Conference on Intelligent Computing and Control Systems
 ICICCS 2017

978-1-5386-2745-7/17/$31.00 ©2017 IEEE 189

TABLE IV. Comparison Between The Existing And
Refactored Parameters:
Parameters Refactored Existing

Weighted method
as per class
(complexity)

0.2 0.4

Nested depth block 0.3 1.2

Number of
parameters

0.1 0.8

The comparison table defines the values or results of
refactored and existing is based on the above mentioned
graphs. The results shows that the proposed technique is better
as compare to existing techniques code maintainability index.

D. Effect of Refactoring on Source Code Metrics

According to the process, we first calculate the metric value
differences for every class between the adjacent releases [1].
At that point, we gathered these metric distinction values into
two gatherings: in the primary gathering we put the metric
contrasts of classes touched by at least one refactoring, and in
the second gathering the metric contrasts of non-refactored
classes.
E. Software Metrics

Software metrics are also used as the internal quality
attributes. Software metric is better occurrence of measuring
the quality of software. Measuring the complexity of the
system is the common procedure to estimate the
maintainability of the software.
 We found that size (TLLOC, TNOS), coupling (RFC,
NOI), clone (CI), complexity (WMC) and comment (TCLOC)
related measurements diminish the most in refactored classes.

Table III. Metric Improvement

Enhanced

System name CI WMC NOI RFC TCLOC TLLOC TNOS
JUnit 4.10 0.728 0.042 0.17 N/A 0.012 0.101 0.113
JUnit 4.11 0.586 0.025 0.0987 N/A 0.0098 0.08654 0.0875
JUnit 4.12 0.5264 0.018 0.0654 N/A 0.0086 0.07754 0.0775
JUnit 5.0 0.444 0.008 0.0274 N/A 0.0076 0.07208 0.062

Existing
JUnit 4.10 0.8736 0.0504 0.204 N/A 0.0144 0.1212 0.1356
JUnit 4.11 0.7032 0.03 0.11844 N/A 0.01176 0.103848 0.105
JUnit 4.12 0.63168 0.0216 0.07848 N/A 0.01032 0.093048 0.093
JUnit 5.0 0.5328 0.0096 0.03288 N/A 0.00912 0.086496 0.0744

With respect to volumes of the distinctions, we can say that
for these measurements the normal chances of is 4-9 times
higher in the classes influenced by refactorings than in the
non-refactored classes.
 Table III. Basically defines the comparison between
existing and enhanced metric improvement. Which defines
how proposed technique is better than existing one. These
values are generated after applying the proposed algorithm
and find the improved metrics. The main objective behind this
research is to extract Junit code with the help of ref-finder tool
and calculate the metric for the code and after calculating we
applied proposed technique and applied refactoring techniques
on it and refactored the code. again we calculate the metric for
refactored code and compare it with the existing technique.
which describes that the enhanced technique is better than the
existing technique.

V. Conclusion
The main goal of this research is to addresses the gaps in
practical and theoretical code re-factoring techniques. We
release connections between re-factoring, code metrics and
bugs that are discovered during code reviews and analysis
cycles.
 We evaluate the set of steps that can be followed to ensure
low code maintenance and enhanced reliability also,
minimizing efforts required for re-factoring during
development of software. In our research we analyze software
project for code refactoring and maintainability of code taking
releases for the project. Ref-Finder was used as tool to extract
code refactoring and use to compare the results of previous
releases and new releases and analyze the present releases. To
measure the code parameters we use code maintainability
index. To measure code metrics in each release we use Hal-

International Conference on Intelligent Computing and Control Systems
 ICICCS 2017

978-1-5386-2745-7/17/$31.00 ©2017 IEEE 190

stead as plug-in that is easily used to measure code metrics
and refactoring problems in the code. Adding some extra
features and using enhanced refactoring techniques measuring
the code metrics and comparing the results of current releases
with the previous releases.
 As per the result section proposed technique out performs
the existing techniques in terms of RMI. Maintainability index
of software code provides a way to ensure that code is
manageable and addition/changes in features of software is
less prone to risk as compared to code that requires high
refactoring. Proposed technique of refactoring has reduced
build on build requirement of refactoring thus making it a
better approach for refactoring. The current proposed work is
limited to medium scale projects and maintainability index is
also developed for medium scale maintainability. Further
applications easily propose work can be done on large scale
project to take it into effectiveness in the context of
maintainability index.

References [1] I. Kádár and P. Heged, “A Code Refactoring Datasetand Its
Assessment Regarding Software Maintainability,” IEEE 23rd
international conference on software Analysis , 2016.

[2] I. Kádár and P. Heged, “A manually validated Code Refactoring
Dataset and Its Assessment Regarding Software
Maintainability,” IEEE 23rd international conference on software
Analysis , 2016.

[3] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba,
“An experimental investigation on the innate relationship between
quality and refactoring ,” J.syst.Softw., vol.107.pp.1-14, 2015.

[4] I. Verebi, “A model-based approach to software refactoring,” 2015
IEEE Int. Conf. Softw. Maint. Evol., pp. 606–609, 2015.

[5] A. Shahjahan, “Impact of Refactoring on Code Quality by using
Graph Theory : An Empirical Evaluation,” pp. 595–600, 2015.

[6] K. O. Elish and M. Alshayeb, “Using software quality attributes to
classify refactoring to patterns”,J.Soft., vol. 7, no. 2, pp. 408–419,
2012.

[7] A. Rani and H. Kaur, “Refactoring Methods and Tools”, Int j.Adv.
Res. Compt. Sci. Soft.Eng. vol. 2, no. 12, pp. 117–128, 2012.

[8] K. O. Elish and M. Alshayeb, “Using software quality attributes to
classify refactoring to patterns”,J.Soft., vol. 7, no. 2, pp. 408–419,
2012.

[9] M.Fowler, K. Beck, J. Brant, W.Opdyke and D. Roberts,
“Refactoring Improving The Design of Existing Code”,Addison
Wesley.

[10] A. Moeini, V. Rafe, and F. Mahdian, “An approach to refactoring
legacy systems”, ICACTE 2010-2013rd Int.Conf. Adv. Comput.
Theory. Engg. Proc., vol. 5-8,2010.

[11] K. O. Elish and M. Alshayeb, “Investigating the effect of refactoring on
software testing effort”, Proc. - Asia-Pacific Softw. Eng. Conf.
APSEC, pp. 29–34, 2009.

[12] Bart D Bios and Jan Verelst, “Refactoring- improving coupling and
cohesion of existing code”, 11th working conference on reverse
engineering, 2004.

[13] Tom Mens and Tom Tourwe, “A Survey of Software Refactoring”, ",
IEEE transaction on software engineering, VOL. 30, NO. 2, 2004.

[14] Noble kumari and Anju Saha, “Effect of refactoring on software
quality”, Proc. Conf. Softw. Maint., pp. 37–46, 2014

[15] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya, “A quantitative
evaluation of maintainability enhancement by refactoring,” Softw.
Maintenance, 2002. Proceedings. Int. Conf., pp. 576–585, 2002.

[16] P. Oman and J. Hagemeister, “Metrics for assessing a software system’s
maintainability,” Proc. Conf. Softw. Maint. 1992, pp. 337–344,
1992.

[17] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object-oriented
design,” IEEE Transactions on Software Engineering, 20(6):476–

493, 1994.
[18] B. Beizer, “Software Testing Techniques,” Van Nostrand Reinhold, New

York, NY, 1990
[19] H. Zuse, “Software Complexity Measures and Methods,” Walter de

Gruyter & Co., New York, NY, 1991.
[20] Swarnendu Biswas and Rajiv Mal, “An approach to software

engineering,” 2009.
[21] P. Jalote, “A Concise Introduction to Software Engineering,”

Addison-Wesley,2002.
[22] M.Fowler, K. Beck, J. Brant, W.Opdyke and D. Roberts,

“Refactoring: Improving the Designof Existing Code,” Addison
wesley,1999.

[23] H.A. Sahraoui, R. Godin, T. Miceli, “―Can Metrics Help To
Bridge The Gap Between The Improvement of OO Design Quality
And its Automation?”, ǁ In: Proc. International Conference on
Software Maintenance, pp. 154–162, 2000.

[24] E. Stroulia, R.V. Kapoor, “Metrics of Refactoring-Based
Development: an Experience Report,” In The seventh International
Conference on Object-Oriented Information Systems, pp. 113–122,
2001.

 [25] S. Demeyer, “Maintainability versus Performance: What’s the
Effect of Introducing Polymorphism? technical report, Lab. On
Reengineering,” Universiteit Antwerpen, Belgium, 2002.

 [26] Y. Kataoka, T. Imai, H. Andou, T. Fukaya, “A Quantitative
Evaluation of Maintainability Enhancement by Refactoringǁ,”
Proceedings of the International Conference on Software
Maintenance (ICSM.02), pp. 576–585, 2002.

 [27] B.D. Bois, T. Mens, “―Describing the Impact of Refactoring on
Internal Program Qualityǁ,” In Proceedings of the International
Workshop on Evolution of Large-scale Industrial Software
Applications (ELISA), Amsterdam, The Netherlands, pp. 37–48,
2003.

 [28] R. Leitch, E. Stroulia, “―Assessing the Maintainability Benefits of
Design Restructuring Using Dependency Analysisǁ,” Ninth
International Software Metrics Symposium (METRICS'03), pp. 309–
322.

 [29] L. Tahvildari, K. Kontogiannis, “―Improving Design Quality
Using Meta-Pattern Transformations: A Metric-Based Approachǁ,”
J. Software Maintenance. Evolution: Research and Practice, 16 (4-
5), (2004) pp. 331–361.

 [30] L. Tahvildari, K. Kontogiannis, J. Mylopoulos, “―Quality-Driven
Software Re-Engineeringǁ,” Journal of Systems and Software,
Special Issue on: Software Architecture - Engineering Quality
Attributes, 66(3), (2003) pp. 225-239.

[31] M. Alshayeb, “―Empirical Investigation of Refactoring Effect on
Software Qualityǁ,” Information and Software Technology, 51 (9),
(2009) pp. 1319–1326.

[32] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, G. Succi, “―A
Case Study on the Impact of Refactoring on Quality and
Productivity in an Agile Team In Balancing Agility and Formalism
in Software Engineering, Bertrand Meyer, Jerzy R. Nawrocki, and
Bartosz Walter (Eds.). Lecture Notes In Computer Science, (5082).
Springer-Verlag, Berlin, Heidelberg, pp. 252-266, 2008.

[33] M. Wahler, U. Drofenik, and W. Snipes, “Improving Code
Maintainability : A Case Study on the Impact of Refactoring”,
2016.

[34] C. Kulkarni, A Qualitative Approach for Refactoring of Code Clone
Opportunities Using Graph and Tree methods, 2016.

[35] M. F. Zibran, “Analysis and Visualization for Clone Refactoring,”
pp. 47–48, 2015.

[36] A. Vasileva and D. Schmedding, “How to Improve Code Quality by
Measurement and Refactoring,,” 2016.

[37] S. H. Kannangara and W. M. J. I. Wijayanayake, “Impact of
Refactoring on External Code Quality Improvement : An Empirical
Evaluation,” pp. 60–67, 2013.
[38] G. P. Krishnan and N. Tsantalis, “Unification and Refactoring of

Clones,” pp. 104–113, 2014.

International Conference on Intelligent Computing and Control Systems
 ICICCS 2017

978-1-5386-2745-7/17/$31.00 ©2017 IEEE 191

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

